Microwave induced structural-impurity ordering of transition region in Ta$_2$O$_5$ stacks on Si

E.Yu. Kolyadina1, R.V. Konakova1, L.A. Matveeva1, V.F. Mitin1, V.V. Shynkarenko1, E. Atanassova2

1V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine
41, Prospect Nauky, 03028 Kyiv, Ukraine
Phone: +380-44-525-61-82; e-mail: konakova@isp.kiev.ua

2Institute of Solid State Physics, Bulgarian Academy of Science
72, Tzarigradsko Chaussée Blvd., 1784 Sofia, Bulgaria
Phone: +359-2-9795000 (448); e-mail: elenada@issp.bas.bg

Abstract. The effect of short-term microwave treatment (MT) on the electronic properties of interface in the Ta$_2$O$_5$–SiO$_x$–Si structures has been investigated. The samples of two types were studied: check ones (batch I) and those exposed to previous MT (batch II). The samples were aged (hold in air) at a temperature of ~300 K for two years. After that, they were exposed to MT during 2, 4, 6 and 8 s. Both before and after two-year aging and further MT, we measured, for all samples, the spectra of surface-barrier electroreflectance (SBER) and concentration depth profiles of the components in the structure, as well as the radii of curvature of heterosystem from which the intrinsic stress (IS) values were calculated. It was found that the transition energy E_g grows with time of MT for both type samples. This corresponds to decrease of compressing ISs in the Si substrate. The collision broadening parameter Γ in the SBER spectra decreases, by 27% in the check sample (with more number of defects) and by 11% in that previously exposed to MT. This fact indicates structural-impurity ordering of the Si–SiO$_x$ interface.

The surface quantum-dimensional effect occurred after MT. After two-year aging, energy quantization was observed in the previously irradiated sample for 6 s and in the check sample (with more number of defects) after MT for 8 s. The most probable mechanism of improvement of the near-surface properties of SiO$_x$–Si interface is discussed.

Keywords: microwave treatment, Ta$_2$O$_5$–Si structure, interface, surface-barrier electroreflectance, intrinsic stresses, quantum-dimensional effect, structural-impurity ordering.

Manuscript received 25.09.08; accepted for publication 20.10.08; published online 30.10.08.

1. Introduction

In recent years, an interest in silicon metal–insulator–semiconductor (MIS) structures with a thin dielectric of high permittivity ε (high-k dielectrics) integrated in CMOS technologies has grown considerably. Using such structures, it is possible to realize high-density dynamic random-access memory (DRAM) [1-9] serving as basis for superpower computer systems. In this case, it is natural to require high uniformity and structural perfection of thin insulators and insulator–Si interfaces.

The surface quantum-dimensional effect at the insulator–semiconductor interface can serve as measure of semiconductor structural perfection. This effect is known to occur in MIS structures with high-quality insulator and perfect structure of insulator–semiconductor interface [10-12]. Ta$_2$O$_5$ ($\varepsilon = 25-30$, gap energy $E_g = 4.45$ eV) belongs to such insulators. However, the formation of a Ta$_2$O$_5$ film on Si showed that the dielectric film has in fact two-layer structure: bulk Ta$_2$O$_5$ on ultrathin (~2 nm) SiO$_2$ interface layer [13-15].

As we have shown earlier, MT of Ta$_2$O$_5$–Si stacks in MIS configuration changes their electrophysical parameters. In particular, they are improved due to structural-impurity ordering at the insulator–Si interface [16]. It turned out that (judging from the surface barrier electroreflectance (SBER) spectra obtained for the Ta$_2$O$_5$–Si test structures) a short-term MT leads to decrease of the collision broadening parameter Γ of the
SBER spectra, while the radius of curvature R of the test structure increases. This evidences relaxation of intrinsic stresses (ISs) in the Ta_2O_5 film. The time stability of the effects observed, however, remained undetermined. This work makes up this deficiency.

2. Experimental procedure

A. Sample preparation procedure

Tantalum pentoxide layers were deposited on p-Si(100) (resistivity of 15 Ohm-cm) by rf reactive sputtering of a tantalum target in an Ar + O$_2$ mixture: oxygen content of 10%, working gas pressure of 3.3 Pa, rf power of 3.6 W/cm2, deposition rate of 5 nm/min. The film thickness was 60 nm.

We studied the structures of two type samples: the check ones and those after previous MT with frequency of 2.45 GHz, radiating power of 1.5 W/cm2 and time of $1+2.5$ s. (The latter means that, after MT for 1 s, the sample was relaxing at room temperature for 1 min. and then was exposed to MT for 2.5 s, so the total time of MT was 3.5 s.) The microwave irradiation was made in the open space (in air) at room temperature.

Then both the untreated and those exposed to MT samples were relaxing at room temperature during two years. After this, the samples were exposed to MT for 2, 4, 6 and 8 s. Using a profilometer-profilograph, we measured radii of curvature of the bended systems studied. They served for calculation of IS in the insulator film, while the Si band structure parameters immediately under the insulator film were determined with SBER.

B. Measurement of radius of curvature and estimation of IS

The radii of curvature of the samples under investigation were measured, before and after MT, with a profilometer-profilograph II-104 and calculated from the deflection l of the arc chord m (see profilogram in Fig. 1) using the following expression:

$$ R = \frac{m^2}{8l}. $$

The IS value, σ, in the film was calculated from the Stoney formula [17]

$$ \sigma = \frac{Ed^2}{6(1-\nu)Rt}, $$

where d (t) is the substrate (film) thickness, ν is Poisson ratio (0.278 for Si), and $E = 1.3\times10^{11}$ Pa is Young’s modulus for Si (100) [18].

![Fig. 1. Profilogram of a bended structure.](image)

![Fig. 2. Bending in two-layer $\text{Ta}_2\text{O}_5 – \text{Si}$ structures at different curvatures of the samples studied.](image)

Shown in Fig. 2 is bending of a two-layer system for two different values of the radius of curvature on the film side. At $R = \infty$, the $\text{Ta}_2\text{O}_5 – \text{Si}$ is not stressed (Fig. 2a), at convex bending (Fig. 2b), the film is compressed, while the substrate is stretched. In this case, the sign of R is “+”. At concave bending (Fig. 2c), the film is stretched, while the substrate is compressed, and the sign of R is “–”.

C. Measurement of SBER spectra

We used the SBER technique [19] to determine how short-term MT and further holding of irradiated samples in air at room temperature during two years affect the degree of perfection of the near-surface silicon layers adjacent to Ta_2O_5. That technique registers small variations of the coefficient of reflection of monochromatic light from the sample surface due to modulation of surface potential with an electric field. An analysis of SBER spectra enables one to get information on the energy band structure of semiconductors, crystalline perfection of near-surface layers, quantum-dimensional effects and ISs. The collision broadening parameter Γ of SBER spectra serves as degree of perfection of the near-surface Si layer. This parameter characterizes scattering of optically excited charge carriers from imperfections of the surface. The parameter Γ decreases as the near-surface layer becomes more perfect, and increases as perfection of this layer is reduced.

The SBER spectra were taken using an automated facility based on a double monochromator ДМР-4. That facility ensured desired signal linearization in energy (with spectral resolution of 3 meV) and automatic division of a variable signal (modulated with an electric field) by a constant signal of light reflection (with sensitivity of 10^{-5}). The SBER spectra were measured using the electrolytic method, in the 0.1 normal water solution of NaCl, at room temperature; the photon energy range was 3.2–3.6 eV.
Table 1. Electronic parameters and stresses of substrate in non-irradiated (initial) $\text{Ta}_2\text{O}_5-\text{SiO}_x-\text{Si}$ structure, $t = 60$ nm.

<table>
<thead>
<tr>
<th>Time of MT, s</th>
<th>E_g, eV</th>
<th>ΔE_g, eV</th>
<th>Γ, meV</th>
<th>τ, 10^{15} s</th>
<th>σ, 10^6 Pa</th>
<th>$E_g + e_1$, eV</th>
<th>e_1, eV</th>
<th>L, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.312</td>
<td>0.068</td>
<td>124</td>
<td>5</td>
<td>4.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>3.335</td>
<td>0.045</td>
<td>120</td>
<td>5.48</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>3.345</td>
<td>0.035</td>
<td>114</td>
<td>5.7</td>
<td>2.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>3.348</td>
<td>0.032</td>
<td>105</td>
<td>6.26</td>
<td>2.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>3.356</td>
<td>0.024</td>
<td>90</td>
<td>7.3</td>
<td>1.6</td>
<td>3.426</td>
<td>0.07</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 2. Electronic parameters and stresses of substrate in irradiated $\text{Ta}_2\text{O}_5-\text{SiO}_x-\text{Si}$ structure, $t = 60$ nm.

<table>
<thead>
<tr>
<th>Time of MT, s</th>
<th>E_g, eV</th>
<th>ΔE_g, eV</th>
<th>Γ, meV</th>
<th>τ, 10^{15} s</th>
<th>σ, 10^6 Pa</th>
<th>$E_g + e_1$, eV</th>
<th>e_1, eV</th>
<th>L, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.340</td>
<td>0.040</td>
<td>96</td>
<td>6.85</td>
<td>2.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>3.342</td>
<td>0.038</td>
<td>95</td>
<td>6.92</td>
<td>2.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>3.345</td>
<td>0.032</td>
<td>94</td>
<td>7.0</td>
<td>2.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>3.373</td>
<td>0.007</td>
<td>85</td>
<td>7.7</td>
<td>0.47</td>
<td>3.513</td>
<td>0.140</td>
<td>2.14</td>
</tr>
</tbody>
</table>

Fig. 3. Function $f(\rho)$ used for determination of the critical point energy E_g of the n-type (p-type) semiconductor.

Fig. 4. Function $g(\rho)$ used for determination of the parameter Γ.

The transition energy E_g (the gap at the critical point of the Brillouin zone) was determined as

$$E_g = E_A + (E_B - E_A) f(\rho),$$

where E_A (E_B) is the energy position of the peak A (B) in the electroreflectance spectrum (see Fig. 3). Here $f(\rho)$ is the function of the spectrum asymmetry parameter ρ

$$\rho = -\left[\frac{\Delta R}{R}\right]_B / \left[\frac{\Delta R}{R}\right]_A.$$

That function (calculated in [20]) is presented in Fig. 3.

The theory of low-field SBER spectra enables one also to determine the Lorentz (collision) broadening parameter Γ that characterizes the total energy scattering of optically excited charge carriers at the semiconductor surface (i.e., the surface quality). That parameter does not specify the scattering mechanisms but involves all the scattering processes occurring at the surface under consideration and leading to SBER spectrum broadening. To determine the collision broadening parameter Γ, the following expression is used:

$$\Gamma = (E_B - E_A) g(\rho).$$

The function $g(\rho)$ (calculated in [21]) is presented in Fig. 4.

We estimated the gap E_g and parameter Γ (using the three-point technique) from energy position of the predominant peaks in the SBER spectrum according to [20, 21], considering the ratio of their intensities. Both the value and sign of IS in the substrate were determined from the difference ΔE_g of the transition energies in Si at the heterosystem interface (Tables 1 and 2) and the value $E_g = 3.38$ eV in the unstrained silicon sample [22], taking into account the coefficient $dE_g / d\sigma$. In silicon, contrary to germanium and gallium arsenide, the transition energy E_g is decreased under compressing strains [23]. The corresponding coefficient is $dE_g / d\sigma = 1.5 \times 10^{-11}$ Pa; the σ value can be estimated as

$$\sigma = \Delta E_g / \left(\frac{dE_g}{d\sigma}\right).$$

D. Concentration depth profiles of heterostructure components

The concentration depth profiles of the $\text{Ta}_2\text{O}_5-\text{SiO}_x-\text{Si}$ heterostructure components were taken (both before and after MT) with a LAS-2000 device using the Auger electron spectroscopy, at layer-by-layer etching of the samples with 1 keV argon ions.
3. Results and discussion

Silicon is indirect-gap semiconductor with $E_g = 1.12$ eV. Indirect transitions cannot be registered with the SBER technique due to small oscillator strength for them. Therefore, we studied the transition whose energy is nearest to that of the indirect transition close to 3.4 eV (the E_0^--transition in the center of the Brillouin zone).

The SBER spectra for the samples from the batch I taken at different times of further MT shown in Fig. 5. Table 1 summarizes the data obtained from those spectra (transition energy E_{ph}, broadening parameter Γ, IS σ and energy relaxation time τ for charge carriers). Figure 6 presents the SBER spectra for the samples from the batch II (exposed to previous MT for 3.5 s and aged during two years) taken at different times of further MT. The parameters obtained from the SBER spectra of those samples are given in Table 2.

The energy relaxation time for optically excited charge carriers is $\tau = \hbar / \Gamma$. Their mobility also is inversely proportional to the broadening parameter Γ.

One can see from the SBER spectra (Figs 5 and 6) that, under certain conditions of microwave irradiation, the spectral peaks are split. We relate this splitting to quantization of charge carrier energy in a quantum well that appeared at the boundary on the substrate side after radiation ordering the substrate structure owing to IS decrease.

The influence of the quantum-dimensional effects on the electronic properties of materials becomes pronounced, if the size of localization area for free charge carriers is comparable to their free path or to de Broglie wavelength. In this case, the motion of charge carriers is confined in that direction, and their energy spectrum is quantized. One should discriminate the bulk size effects (that exist, for example, in superlattices) and the surface size effects (that exist at the interfaces with a triangular quantum well). At the surface quantum-dimensional effect, the energy quantization occurs for charge carriers of one type only (either electrons or holes).

Along with the principal transition at the energy E_{ph}, those involving the quantized levels at the energies $E = E_{ph} + e_n$ (where e_n is the energy of a level in the well, $n = 1, 2, 3, \ldots$) also appear in the SBER spectrum for a sample with a quantum well. The energy e_n is determined by the level number n, quantum well width L and the value of the interband effective mass m^* at the critical point of the Brillouin zone. For p-Si, $m^* = 0.119 m_0$ (where m_0 is the free electron mass) at the point Γ of the Brillouin zone.

$$e_n = \frac{\hbar^2 \pi^2 n^2}{2m^* L^2}. \quad (7)$$

In the case of the bulk quantization, the energy of a quantized level increases with its number n (at a constant quantum well width L) and decreases as L grows.

In our experiments, we observed the only level (after MT for 6 s for the samples from the batch II and for 8 s for those from the batch I). One can see from Tables 1 and 2 that the quantum well width decreases as the quantized level energy increases: $L = 3$ nm for $e_1 = 70$ meV and $L = 2.14$ nm for $e_1 = 140$ meV.

The data presented in Tables 1 and 2 show that the transition energy increases with time of MT for the samples from both batches. This corresponds to reduction of compressing ISs in Si at the interface. For the samples from the batch I, E_g increases from 3.312 eV up to 3.356 eV after MT during 8 s, while changing from 3.340 eV to 3.373 eV after MT during 6 s for the samples from the batch II. In this case, Γ decreases from 124 meV down to 90 meV (by 27%) and from 96 meV down to 85 meV (by 11%), respectively. The ISs in the substrate decrease from 4.5×10^9 Pa down to 1.6×10^8 Pa (by 64%) (batch I) and from 2.6×10^9 Pa down to 1.6×10^8 Pa (by 64%) (batch II).
4.7 \times 10^8 \text{ Pa} \) (by 82\%) (batch II), while \(\tau \) increases from \(5 \times 10^{-15} \text{ s} \) up to \(7.3 \times 10^{-15} \text{ s} \) (by 31\%) (batch I) and from \(6.85 \times 10^{-15} \text{ s} \) up to \(7.7 \times 10^{-15} \text{ s} \) (by 12\%) (batch II). These results mean that the process of radiation-enhanced IS relaxation and interface ordering are proceeding more intensely in a less perfect structure.

We measured the heterostructure bending radii to determine presence of IS in the film and variation of IS value as a function of the samples previous history and MT duration. The results obtained showed that the film always was on the concave size of the sample. This means that there existed stretching ISs. For the samples from the batch I, the heterostructure bending radii increased from \(10 \text{ m} \) up to \(19.7 \text{ m} \) (by 50\%); after MT for 8 s, IS decreased by two times, from \(5.98 \times 10^9 \text{ Pa} \) down to \(3 \times 10^9 \text{ Pa} \). For the samples from the batch II, the heterostructure bending radii increased from \(17.3 \text{ m} \) up to infinity (the structure became flat) after MT for 6 s, and ISs in the film dropped from \(3.4 \times 10^9 \text{ Pa} \) down to zero. Therefore, the radiation-enhanced processes were proceeding in the film, too. Their intensity is determined by previous technological history of the sample (pretreatment before aging).

A. Principal features of the effect of structural-impurity ordering

From the data presented in Tables 1 and 2, and in Figs 5 and 6, one can see that:

- ordering is observed under microwave irradiation at room temperature; no additional thermal annealing is required;
- the effect is characterized by well-pronounced localization in the near-surface region of the semiconductor. A direct proof to near-surface localization of the ordering effect was obtained when observing the quantum-dimensional effect and decrease of the parameter \(\Gamma \) at investigation of the SBER spectra (Figs 5, 6). The region of MT-enhanced ordering ranges to a depth of several nanometers from the surface;
- we observed similar effect in the Al–TaN\(_2\)O\(_5\)–Si, MIS structure [16]. In this case, the improvement of \(I–V \) and \(C–V \) characteristics was also observed;
- the effect occurs in a limited range of irradiation doses.

Surface-enhanced radiation ordering in semiconductor structures has been studied mostly for the device structures based on III–V compounds (Schottky barrier, metal–insulator–semiconductor and insulator–semiconductor structures) exposed to rather low doses of \(^{60}\text{Co} \) \(\gamma \)-radiation, high-energy (1–4 MeV) electrons and some other types of radiation [24-26]. It was shown that transition of a metastable system to a more equilibrium (ordered) state might occur via one of the following processes, (or their combination, depending on the specific situation):

- radiation-induced gettering of the initial point defects at the interface (involving their annihilation) due to their interaction with the elastic stress field [27];
- radiation-ordered motion of impurities and intrinsic defects toward the surface, with forcing the recombination-active impurities out of their sites into interstitials and vice versa (the Watkins effect) [28];
- radiation-ordered IS relaxation [29].

Judging from the above experimental data, one of these processes leading to MT-induced improvement of the parameters of SiO\(_x\)–Si interface is similar to the surface-enhanced ordering under action of rather low doses of \(\gamma \)-radiation that has been observed earlier [25, 26]. Indeed, interface is a region of two contacting materials that has a high density of defects. It can be considered as some transition layer (in our case, formed by SiO\(_x\) composition) that serves as inner drain for defects. One may follow the gettering action of the interface by comparing the component concentration profiles in the Ta\(_2\)O\(_5\)–SiO\(_x\)–Si contact (before and after MT) for one of the samples, (Fig. 7). As is seen the SiO\(_x\)–Si interface becomes more abrupt after MT, and the effective thickness of the interface transition layer decreases.

Fig. 7. Concentration depth profiles of Ta\(_2\)O\(_5\)–SiO\(_x\)–Si structure components:– before (a) and after 4 s MT of two-year aging at room temperature sample (b).
The SiO₂ layer becomes narrower (by a factor of 2). As a result, the near-surface silicon layer is “cleaned” of oxygen, Ta₂O₅ is further oxidized, and the SiO₂–Si interface becomes more perfect. This leads to reduction of scattering of optically excited charge carriers on it. Therefore, the collision broadening parameter Γ decreases, while both the electron energy relaxation time τ and charge carrier mobility μ increase. Besides, after exposition to sufficient irradiation dose, the inversion of surface conductivity (p→n) occurs in the Si substrate at the SiO₂–Si interface. This leads to polarity reversal for the SBER signal (Fig. 6). It is known that electron mobility is usually higher than the hole one. Therefore, the collision broadening parameter (that is inversely proportional to the charge carrier mobility) decreases, while the energy relaxation time of charge carriers (τ = h/Γ) increases. At concurrent decrease of the collision broadening parameter due to improvement of the interface, it became possible to observe surface quantization of electron energy in the triangle potential well that appeared because of surface conductivity inversion.

In this case, one should not exclude the dislocations that are produced in the course of MT-induced IS relaxation. They can serve as effective additional drain for point defects, thus increasing the gettering effect. The authors of [30] who investigated the effect of microwave radiation on defect structure of Cd₀.₁₂Hg₀.₈₈Te crystals denoted the possibility of such process. A structural relaxation and reconstruction of structure defects ensemble in GaAs single crystals exposed to a short-term MT is observed in [31]. It should be noted that a transformation of dislocation structure of silicon after MT was also observed [32]. In this case, the MT-induced kinetics of residual strains relaxation differed considerably from the thermal one.

Primary localization of the effect near interface demonstrates its decisive role

- as defect drain;
- in formation (production) of centers promoting interaction between defects;
- in facilitation of the process of production (or annihilation) of MT-induced defects, since the bonds between atoms in the near-surface region are reduced as compared to bulk semiconductor.

B. Most likely mechanism of improvement of the SiO₂–Si interface near-surface properties

It was noted above that decrease of the parameter Γ is related to increase of the charge carrier mobility μ in the near-surface Si layer adjacent to a thin SiO₂ interface layer. The mechanism of μ increase under action of microwave radiation on a heterostructure is structural-impurity ordering in the near-surface Si layer and at the SiO₂–Si interface accompanied with IS relaxation (in this case, decrease of Γ correlates with growth of R for all structures studied) and radiation-enhanced mass transport of components in the SiO₂ layer.

An important fact that confirms increase of μ in the near-surface Si layer is also polarity reversal of the signal in the SBER spectrum for the sample (curve 3 in Fig. 6) due to appearance of an inversion layer (it is known that charge carrier mobility in n-Si is considerably over that in p-Si). It was found that the width of the inversion layer adjacent to the SiO₂ layer was ~3 nm. This indicates high quality of the heteroboundary in the sample that formed in the course of microwave irradiation during 6 s after two-year relaxation and previous irradiation for 3.5 s.

The inversion layer is a potential well for electrons whose one wall is the SiO₂–Si interface, and the electrostatic potential forcing electrons against the boundary plays the role of another wall.

4. Conclusion

The data presented enable one to conclude that the observed improvement of parameters of the semiconductor interface region in the Ta₂O₅–SiO₂–Si system after a short-term MT, as well as after relaxation in the course of two-year aging followed with MT for 4–6 s, can be explained in terms of radiation defect-impurity gettering. It leads to ordering the Si near-boundary region under MT for several seconds.

The processes of radiation ordering are proceeding more intensely in a thin layer that is adjacent to the SiO₂–Si interface. The effects of radiation ordering are pronounced more clearly in systems with less perfect interface.

The processes of MT-induced ordering in the Ta₂O₅–SiO₂–Si structures occur even at room temperature and are thermally stable. Therefore, possibility of their practical application for correction of parameters of the Ta₂O₅ stacks seems evident.

The Ta₂O₅/Si system exposed to previous MT remain stable after holding for two years at room temperature. Further, 2–6 s MT only improves the parameters of SiO₂–Si interface.

References

4. J. Robertson, P.W. Peacock. Atomic structure, band offsets, growth and defects at high-k oxide/Si